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ABSTRACT

Although stochastic models of speech signals (e.g. hidden
Markov models, trigrams, etc) have lead to impressive
improvements in speech recognition accuracy, it has been noted
that these models have little relationship to speech production
(Lee, 1989), and their recognition performance on some
important tasks is far from perfect.  However, there have been
recent attempts to bridge the gap between speech production and
speech recognition using models that are stochastic and yet
make more reasonable assumptions about the mechanisms
underlying speech production (Bakis, 1991; Deng, 1998;
Hogden, 1998; Picone et al., 1999).  One of these models,
Multiple Observable Maximum Likelihood Continuity Mapping
(MO-MALCOM) is described in this paper.

There are theoretical and experimental reasons to believe
that MO-MALCOM learns a stochastic mapping between
articulator positions and speech acoustics.  Furthermore, MO-
MALCOM can be combined with standard speech recognition
algorithms to form a speech recognition approach based on a
production model.  Results of experiments related to MO-
MALCOM are summarized, and some implications for theories
of speech production and speech perception are discussed.

BACKGROUND: STATE-OF-THE-ART SPEECH
RECOGNITION

In many realistic domains, automatic speech recognition
performance is inadequate.  To be concrete, at the National
Institute of Standards and Technology 1998 HUB-5 Speech
Recognition Evaluation, state-of-the-art systems had about a
60%-65% word recognition rate on “casual speech”, i.e.,
telephone conversations in the Switchboard database (Martin,
Fiscus, Przybocki & Fisher, 1998).  Since speaking rates of 200
words per minute are not uncommon in casual speech, a 60%
word recognition accuracy implies approximately 80 errors per
minute -- an unacceptable rate for many applications.
Furthermore, recognition performance is not improving rapidly.
Recognition rates of the best systems on the Switchboard data
were between 64.9% and 61.2% for 1996, 1997, and 1998,
although they have improved from only 52% recognition in the
1995 evaluation1.  These recognition results should prompt us to
look for alternatives to the current approach.

The primary tools used in speech recognition are hidden
Markov models (HMMs) -- they are used to estimate the
probability of an acoustic sequence given the model parameters
(Jelinek, 1997).  A nice feature of HMMs is that maximum
likelihood techniques allow the model parameters to be

                                                  
1 There was no 1999 evaluation and the 2000 evaluation has not
started as of the time this paper was written

automatically determined from training data.   The automatic
parameter estimation, and the stochastic nature of the HMMs are
presumably the features that allow them to cope with the
amazing amount of variability in speech.

While HMMs have been useful, it has been noted that “[the
HMM] is a very inaccurate model of the speech production
process” (Lee, 1989).  The problems with HMMs have
prompted many researchers to propose alternatives (a good
review is given in Ostendorf, Digalakis & Kimball, 1996).  Most
of the alternatives add parameters to HMMs to allow greater
ability to model signals.  Adding parameters has the
disadvantage that more data is needed to train the models, and
training data sets are already very large.  In our opinion, making
the acoustic models more general by adding parameters is the
wrong way to go.  In fact, like other researchers in the field
(Bakis, 1991; Deng, 1998; Picone et al., 1999), we are interested
in making the acoustic models more specific to speech, i.e.,
retain the stochastic nature of the model and the automatic
parameter estimation, but change the underlying model to more
accurately represent speech production.

INTRODUCING MO-MALCOM

Multiple Observable Maximum Likelihood Continuity Mapping
(MO-MALCOM) is a variant of the MALCOM algorithm
(Hogden, 1996; Hogden, 1998).  MO-MALCOM produces a
stochastic model of two or more sequences of categorical data
values.  In the work reported here, the categorical data
sequences are vector quantization (VQ) codes, representing
speech acoustics, and time-aligned phoneme labels.

The main assumptions of MO-MALCOM are 1) that data
sequences are produced by objects moving smoothly through an
abstract space called a continuity map (CM) and 2) that the
probability of observing a particular data value at time t is
dependent on the position, x(t), of the object at time t.  These
assumptions model the facts that 1) speech sounds are produced
by motions of the speech articulators and 2) the sound output at
time t can be determined from the positions of the articulators at
time t.  As discussed below, these assumptions are realistic
enough that it is often helpful to think of CM positions as
estimated articulator positions.

MO-MALCOM is very similar in spirit to an HMM.  As
with HMMs, the MO-MALCOM parameters are learned from
training data using maximum likelihood techniques.  Paths of
the objects through the continuity map are considered
unobservable and are inferred in much the same way as HMM
state sequences.  Furthermore, the probability of outputting a
particular VQ code given a path position is analogous to the
output probability of an HMM state.  However, when we
continue the analogy of MO-MALCOM continuity map position
to states we see two major differences between HMMs and MO-
MALCOM: 1) in an HMM there are a finite number of states



whereas in MO-MALCOM the state is a continuous variable; 2)
MO-MALCOM uses a smoothness constraint on paths through
the CM, which is much more realistic and uses much more
context than a first or second order Markov assumption.

In order to determine the probability of each code for each
position in the CM, MO-MALCOM estimates the parameters of
probability density functions (PDFs), e.g. Gaussians, over the
continuity map.  To be concrete, for each VQ code, ci , MO-

MALCOM estimates an a priori probability, P ci[ ] , and

parameters of PDFs that give p x ci ,j[ ] , where x  denotes a

position in the CM and j represents the PDF parameters (e.g.
means and covariance matrices). These parameters constitute the
MO-MALCOM estimate of a probabilistic mapping between
VQ codes and articulation.

While it may or may not be possible to invert a deterministic
mapping from articulation to acoustics (Atal, Chang, Mathews
& Tukey, 1978; Hogden et al., 1993), Bayes’ law makes it easy
to invert MO-MALCOM’s probabilistic mapping to get the
probability of a VQ code given a continuity map position,

P ci x,j[ ] =
p x ci ,j[ ]P ci[ ]

p x j[ ]
EQ. 1

and analogous techniques are used to get the probability of each
phoneme, fj, given a continuity map position,

P fj x,j[ ] =
p x fj ,j[ ]P fj[ ]

p xj[ ]
EQ. 2

The joint probability of fj and ci  given a CM position is

approximated by

P fj ,ci x,j[ ] =  P fj x,j[ ]P ci x,j[ ] EQ. 3

and the joint probability of a sequence of VQ codes, c = [c(1),
c(2), ... c(n)], and phonemes, f = [f(1), f(2), … f(n)], given a
path through the CM, X = [x(1), x(2), ... x(n)], is approximated
by the equation:

P c,f X,j[ ] = P c(t), f (t) x(t),j[ ]
t = 0

n

’ EQ. 4

As with HMMs, we must make a conditional independence
assumption to calculate the probability of a whole sequence
from the probabilities at each time.  However, this assumption is
somewhat more warranted for MO-MALCOM.  To support this
claim, note that if the path position at time t contains sufficient
information about the articulator positions at time t, then one
should expect conditional independence – just as one should
expect that the sound output from the mouth at time t depends
only on the articulator positions at time t.  As we discuss below,
there is good reason to believe that MO-MALCOM is capable of
inferring articulator positions, so the conditional independence
assumption for VQ codes is probably not too bad.  However, it
is unlikely that the probability of a phoneme at t given the
articulator positions at t is conditionally independent of the
temporal context, so MO-MALCOM can likely be improved.

Signal Processing

Before applying MO-MALCOM to continuous valued data,
short time-windows of the data should be processed into vectors
that contain information about vocal-tract shape and as little
information as possible about the vocal-tract excitation. (e.g.
cepstra, LPC coefficients, mel-cepstra).  This signal processing
must be done to meet the MO-MALCOM assumption that the
signals are produced by slowly moving objects, such as the
articulators, not quickly moving objects such as the vocal
chords.  The resulting sequences of vectors are then converted to
sequences of categorical data values using VQ.

MO-MALCOM Training

As with HMMs, the MO-MALCOM parameters need to be
trained on a large corpus of training data.  Two learning steps
are iteratively repeated to calculate the parameters of the PDFs:

1) Given some initial set of PDF parameters, and many different
examples of simultaneous f  and c data sequences, find the
smooth paths (i.e. paths that have no Fourier components above
some  cut-off frequency) through the CM that maximize the
likelihood of the code sequences.  That is,

ˆ X = arg max
X

P c,f X,j[ ] EQ. 5

2) Find the values of the PDF parameters that maximize the
probability of the data sequence given the path estimates found
in step 1.  That is,

ˆ j = arg max
j

P c,f ˆ X ,j[ ] EQ. 6

There are a variety of standard algorithms for performing
the maximizations required above.  We have found conjugate
gradient ascent methods useful.

MO-MALCOM Speech Recognition

During recognition, we first want to estimate the probability of
each phoneme at each time step.  To do so we find the smooth
path through the CM that maximizes the probability of the VQ
codes:

ˆ X = arg max
X

P c(t) x(t),j[ ]
t = 0

n

’ EQ. 7

After obtaining this path estimate, it is possible to estimate
the probability of each phoneme at each time using EQ. 3.

Combining MO-MALCOM with Word Models

In standard speech recognition algorithms, the probability of a
phoneme sequence given a word, P f t( ) = fi w[ ] , is estimated

using a lattice model, and is then used to get the probability of a
word given the observable data.  Since a variety of standard
techniques can be used to create a lattice model, we will not
discuss the problem of estimating lattice model structures or
parameters here.  However, in this section, we discuss one way
to combine a lattice structure with MO-MALCOM processing to
achieve speech recognition.



Define variables reminiscent of the HMM forward
algorithm:

aij = P f t( ) = fi f t -1( ) = f j ,w[ ] EQ. 8

bi t( ) = P f t( ) = fi x t( )[ ] EQ. 9

p i = P f 1( ) = fi w[ ] EQ. 10

ai t( ) = P f t( ) = fj w,x t( ), x t -1( ),..., x 1( )[ ]  EQ. 11

Assuming conditional independence, the reader can confirm that

a i 1( ) = bi 1( )p i EQ. 12

a i t( ) = bi t( ) aij
j

Â a j t - 1( ) EQ. 13

Using these recursively calculated probabilities we can find

P w X[ ] = P w x t( ), x t -1( ), ...,x 1( )[ ]
= ai t( )P w( )

i
Â

EQ. 14

The basic idea, then, is to start by finding the smooth path
through the continuity map that maximizes the probability of the
VQ code sequence.  Then use that path to get the probability of
each phoneme for each acoustic window.  Then combine the
probabilities of each phoneme given the path, with the phoneme
probabilities given the word, and the prior word probability, to
get an estimate of the posterior probability of the word.

Optimizing Other MO-MALCOM Parameters

The formulation above assumes that we know the number of
dimensions to use in the continuity map, and that we know what
cut-off frequency to use to constrain the smooth paths.  Of
course, these parameters are typically not known a priori.  The
obvious way to determine the parameters is to simply try many
combinations of parameters and determine which combination
works best for the problem being studied.  However, doing so
can be very time consuming.

A (sometimes) more expedient way to optimize the number
of dimensions and cut-off frequency is to use MO-MALCOM’s
estimate of the probability of a cross-validation set as a measure
of how well the model is performing.  Doing so is relatively
straightforward, but it should be remembered that estimating
MO-MALCOM paths from the cross-validation set, and then
determining the probability of the data given the paths, will
result in a biased estimate of the generalization performance.
Instead, a MO-MALCOM path should be estimated without
using one pair of categorical data values from a sequence, then
the probability of the left out data pair should be calculated
using the estimated path, and the process should be repeated
leaving out successive pairs of data values.

SUMMARY OF MO-MALCOM EXPERIMENTS

An encouraging outcome of both MALCOM and MO-
MALCOM is that, after training, the estimated mean continuity
map position for a given VQ code is highly correlated with the

mean of the measured articulator positions that produce the VQ
code (Hogden, 1995; Nix, 1998).  This is true even though the
training data does not include articulator positions.  This result
was not unexpected.  In fact, statistical theory tells us that
maximum likelihood estimates of mixture density parameters
are  consistent under relatively general conditions (McLachlan
& Basford, 1988).  That is, maximum likelihood parameter
values will approach the actual parameter values of the system
generating the data as the amount of training data gets large.
Since the MO-MALCOM model parameters constitute an
estimate of the mapping between articulator positions and
acoustics, the fact that the parameters are correlated with
measured articulator positions suggests that the conditions are
met for the MO-MALCOM model.

Furthermore, Nix (1998) showed that MO-MALCOM
positions are excellent at discriminating phonemes – better than
measured articulator positions.  Using a jackknife procedure,
Nix used MO-MALCOM to create a CM from training data.
Then, on testing data, smooth paths through the CM were found
using only the VQ codes.  Fisher’s discriminant analysis was
used to find the axis of the map that best discriminated the
phoneme pair.  Along this best dimension, the percentage of
area in common between p(x|fi) and p(x |fj) was computed.  To
the extent that this is a low value, the CM positions give a lot of
information about phoneme identity.

The ability of MO-MALCOM to differentiate between
phonemes differing in place of articulation is demonstrated by
two examples: 1) the largest overlap in MO-MALCOM PDFs
between phoneme pairs composed of [p], [t], and [k] is 1%; 2)
the largest overlap between phoneme pairs composed of [b], [d],
and [g] is 6%.  The ability of MO-MALCOM to discriminate
between phonemes with similar articulation but different
acoustics is also evident -- [b] and [p] have an overlap of less
than 0.5%, [d] and [t] have an overlap of 2%, [k] and [g] have
an overlap of 6%.  Even [b] and [w] are discriminated well by
MO-MALCOM positions (the overlap is less than 0.5%).
Furthermore, MO-MALCOM continuity map positions are good
at discriminating vowels -- the largest overlap for MO-
MALCOM is 3% and only 6 vowel pairs have overlaps larger
that 0.5%. The most difficult pair of phonemes for MO-
MALCOM to discriminate are [r] and [l], which have 19%
overlap.  The next most difficult pair is [r] and the glottal stop
with a 17% overlap.  The vast majority of phoneme pairs have
less than a 0.5% overlap and only 7 phoneme pairs have
overlaps of more than 10%.

Despite good phoneme discrimination results, when MO-
MALCOM was used to perform speaker-dependent, isolated-
word recognition on data derived from the phonetically labeled
portion of the switchboard data set, the recognition results were
not impressive (Hogden, 1998).  Even on the training set, only
about 40% recognition accuracy was achieved.  However, there
were many known deficiencies in the recognition system that
was used (it was created in less than a year), which leads us to
believe that further tests are needed to assess recognition
performance.  First, the training set was much smaller than the
speaker-independent continuous-speech recognition training sets
commonly used today (we used about 3 minutes of speech as
opposed to, say, 65 hours on the complete Switchboard training
set).  Second, doing isolated-word recognition prevented the
algorithm from taking advantage of a language model.  Third,
the model that estimates the probability of sequences of
phonemes given a word was much more simplistic than in state-
of-the-art recognition systems.  Fourth, the dictionary contained



only canonical pronunciations of words as opposed to
pronunciations that commonly occur in casual speech.  This
problem is particularly severe since, in automatically extracting
isolated words from continuous speech, phonemes were often
added or deleted from the beginning or the end of the word.
Fifth, we did not use cepstral mean subtraction or variance
normalization.

DISCUSSION

The MO-MALCOM theory is still incomplete.  Since MO-
MALCOM involves estimating mixture density parameters, it is
reasonable to expect that MO-MALCOM parameters will be
consistent.  Nonetheless, a proof that MO-MALCOM
parameters are consistent would be welcome.  Although not
described above, simplifications to the MO-MALCOM model
are used to speed up processing.  The effects of these
simplifications on the results are unknown, and should be
studied.  Furthermore, we are currently exploring MO-
MALCOM variations, such as building a task dynamic model
(Saltzman & Munhall, 1989) into MO-MALCOM.

If it can be proven that MO-MALCOM parameters are
consistent, then it will be possible to argue that the mapping
between acoustics and articulation, or possibly between
acoustics and task-dynamic tract variables, can be recovered
from acoustics alone.  This would have important repercussions
for the motor theory of speech perception (Liberman &
Mattingly, 1985) and for models of speech production.

In particular, early versions of the motor theory assumed that
a link between speech production and perception was learned by
association.  However, the motor theory was revised in part
because of a study on a subject who could perceive speech
despite the fact that the subject was not able to produce speech
(MacNeilage, Rootes & Chase, 1967).  The lack of an apparent
training signal for this subject pushed some motor theorists to
argue that the link must be innate.  While showing that the link
can be learned without a training signal does not prove that
evolution (which can be thought of as a learning algorithm)
could not have imbued humans with an innate link, it certainly
strengthens the argument that the link can be learned by
mechanisms other than evolution.

For an example of the implications for speech production
models, consider that it has been argued that phoneme targets
must be acoustic because there is no teaching signal to help
learn the mapping between acoustics and tract variables
(Guenther, Hampson & Johnson, 1998).  Such an argument is
not valid if a teaching signal is not required to learn the
mapping.

We believe that MO-MALCOM and its allies will prove to
be valuable tools to add to our speech processing toolbox, and
may well engender significant changes in theories of speech
perception and speech production.

REFERENCES

Atal, B. S., Chang, J. J., Mathews, M. V., & Tukey, J. W.
(1978). Inversion of articulatory-to-acoustic transformation in
the vocal tract by a computer-sorting technique. Journal of the
Acoustical Society of America, 63(5), 1535-1555.

Bakis, R. (1991). Coarticulation modeling with continuous-
state HMMs, Proceedings of the IEEE Workshop on Automatic
Speech Recognition, (pp. 20-21). New York: Arden House.

Deng, L. (1998). A dynamic, feature-based approach to the
interface between phonology and phonetics for speech modeling
and recognition. Speech Communication, 24, 299-323.

Guenther, F., Hampson, M., & Johnson, D. (1998). A
theoretical investigation of reference frames for the planning of
speech movements. Psychological Review, 105(4), 611-633.

Hogden, J. (1995, ). A maximum likelihood approach to
estimating speech articulator positions from speech acoustics.
Paper presented at the Neural Information Processing
Systems:Natural and Synthetic, Vail, Colorado.

Hogden, J. (1996). A maximum likelihood approach to
estimating articulator positions from speech acoustics (LA-UR-
96-3518). Los Alamos, NM: Los Alamos National Laboratory.

Hogden, J. (1998). Phase 1 Final Report: An Articulatorily
Constrained, Maximum Likelihood Approach to Speech
Recognition (LA-UR 98-5638). Los Alamos, NM: Los Alamos
National Laboratory.

Hogden, J., Lofquist, A., Gracco, V., Oshima, K., Rubin, P.,
& Saltzman, E. (1993). Inferring articulator positions from
acoustics: an electromagnetic midsagittal articulometer
experiment. Journal of the Acoustical Society of America,
94(3), 1764(A).

Jelinek, F. (1997). Statistical Methods for Speech
Recognition. Cambridge, MA: MIT Press.

Lee, K. F. (1989). Automatic Speech Recognition: The
Development of the SPHINX System. Boston: Kluwer
Academic Publishers.

Liberman, A., & Mattingly, I. (1985). The motor theory of
speech perception revised. Cognition, 21, 1-36.

MacNeilage, P., Rootes, T., & Chase, R. (1967). Speech
production and perception in a patient with severe impairment
of somesthetic perception and motor control. Journal of Speech
and Hearing Research, 10(3), 449-467.

Martin, A., Fiscus, J., Przybocki, M., & Fisher, B. (1998,
September 24-25). The Evaluation: Word Error Rates &
Confidence Analysis. Paper presented at the Proceedings of the
9th Hub-5 Conversational Speech Recognition Workshop,
Linthicum Heights, MD.

McLachlan, G. J., & Basford, K. E. (1988). Mixture
Models: Inference and Applicatins to Clustering. (2 ed.). (Vol.
84). New York: Marcel Dekker, Inc.

Nix, D. (1998). Machine learning methods for inferring
vocal-tract articulation from speech acoustics. Unpublished
Ph.D., University of Colorado, Boulder, CO.

Ostendorf, M., Digalakis, V., & Kimball, O. (1996). From
HMM's to Segment Models: A Unified View of Stochastic
Modeling for Speech Recognition. IEEE Transactions on
Speech and Audio Processing, 4(5), 360-377.

Picone, J., Pike, S., Regan, R., Kamm, T., Bridle, J., Deng,
L., Ma, Z., Richards, H., & Schuster, M. (1999). Initial evaluatin
of hidden dynamic models on conversational speech.
International Conference on Acoustics, Speech, and Signal
Processing, 1, 109-112.

Saltzman, E., & Munhall, K. (1989). A dynamical approach
to gestural patterning in speech production. Ecological
Psychology, 1(4), 333-382.


